If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+5x-450=0
a = 1; b = 5; c = -450;
Δ = b2-4ac
Δ = 52-4·1·(-450)
Δ = 1825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1825}=\sqrt{25*73}=\sqrt{25}*\sqrt{73}=5\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{73}}{2*1}=\frac{-5-5\sqrt{73}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{73}}{2*1}=\frac{-5+5\sqrt{73}}{2} $
| 161=6(1+5v)+v | | 1-4n=-7-5n | | 14r=16-2r | | –6=–c+–12 | | -5(3x+10)+20=10x+5 | | -3=12y-5(2yĺ | | 8-2x=-2(x-3) | | 6(2x+1)-3(x-8)=3 | | c+c-23+L=562 | | -50=6m-8 | | -24(4z-1)=39z(+2) | | 6(x+4)+1=61 | | 4y+32=38 | | 1/2(8x-12)+1x=11 | | 7h+6=20 | | 5d−11=4 | | -3x+16+5×=8 | | 108=-y+178 | | –6=3−3m | | 3x-9+3x=3+6x-12 | | 12x+7=8x-5 | | 3x+12x-21=27 | | 2x-7+3x=11+1x+2 | | 21x=-39 | | 2/3b=12. | | 2(4y-5)=14 | | 54x-126=360 | | 3-2c=29 | | -5x-8=-33+6x | | 7(7-3b)=-98 | | 1.25c=250. | | 5x+9=11x+3 |